

Alex Heneveld
Co-Founder & CTO

Alasdair Hodge
Principal Engineer

Alex brings 20 years experience designing software

solutions in the enterprise, start-up, and academic

sectors. Alex was with Enigmatec Corporation where

he led the development of what is now the Monterey®

Middleware Platform™. He founded PocketWatch

Systems, commercialising results from his doctoral

research. Alex holds a PhD (Informatics) and an MSc

(Cognitive Science) from the University of Edinburgh and

an AB (Mathematics) from Princeton University.

Alasdair is a solutions architect with 25 years’ experience.

An authority in cloud, software applications and

automation across all major cloud platforms, he has

been engaged in the design and optimisation of cloud

services in banking and finance and other service-based

sectors such as telecoms, electronic design and supply-

chain automation for over 12 years.

/ Resilience through Application Management 2

In today’s environment, companies are facing
unprecedented challenges, with two vital but often
contradictory pressures:

Customer-facing applications,

internal applications and all

IT systems need to run well,

reliably and at scale

Application development

needs to be agile to respond

quickly to changes in the

business priorities

Cloudsoft are a leading high-end resilience software and consultancy

company who work with companies of all sizes, from financial services to

telcos and aerospace, to resolve the tension between reliability and agility.

In this eBook, we share some of our main learnings about the processes and

tools that have the biggest impact on maximizing resilience and agility while

keeping a good balance. Chief among these is application management, a

solution that is often overlooked but which we have found to be one of the

most powerful, able to give governance and visibility up and down the stack,

and the area which we’ve specialized in for over ten years.

Introduction

/ Resilience through Application Management 3

Everyone in the technology industry knows

how important it is to make systems

resilient: if people in a company can’t use

their systems, they aren’t productive; and

if customers can’t access them, or if the

systems are slow, then the customers can’t

make purchases, revenue goes down, and

the company’s reputation takes a long-

term hit. In regulated industries, there

can be additional swingeing penalties

imposed by regulators, and, increasingly

often, systems are interdependent and one

minor outage or slowdown somewhere

obscure can have a severe impact on a

mission-critical system downstream.

Given how vital resilience is,
why do so many applications go
down so often?

Let us start by challenging the question. Most systems

are pretty reliable. But “salience bias” — the squeaky

wheel effect — means the failures get undue attention,

in users’ mind and on social media. Even a short period

of downtime for a bank or credit card company gets

headlines, but no one notices if they work for ten years

straight. Keeping downtime below 5 minutes requires a

lot of nines:

This is compounded by complex interplay between

systems, especially with the rise of microservices and

container architectures, where suddenly if 100 systems

need to function to deliver a result, in order to get

five nines reliability on the result, you need a mean

(geometric mean) of seven nines on each of

the microservices:

(0.9999999)^100
=
0.9999900000494

Introduction: Why is Resilience so Hard?

% up-ti
m

e

Max
 D

owntim
e per Y

ear

Num
ber o

f N
ines

99.99999% 3.2 seconds7

99.9999% 31.5 seconds6

99.999% 5.3 minutes5

99.99% 52.6 minutes4

99.9% 8.8 hours3

99% 3.7 days2

/ Resilience through Application Management 4

Plan for failure
One of the singular best pieces of advice for resilience

is to design defensively, anticipating failures and

develop the code so that it manages as best it can in

the presence of failures (rather than make things worse

when things go bad!)

Recovery point objective (RPO)

Engineers enjoy solving problems, and ensuring no data

loss even in the most extreme situations is an enticing

challenge for some. However it is important to consider

whether it is necessary in each case; for an e-commerce

site, for instance, losing 5 minutes of orders per year is

likely to be easily solved by manual processes (when the

customer complains). It might be possible to get the

data from other sources (e.g. credit card charges and

reviewing confirmation emails), it’s usually possible to

mitigate the problem (e.g. email users who were active

prior to the outage to apologize that orders may have

been lost), and often much cheaper to pay out

(e.g. give them the order for free, rather than run super-

high availability)

“CAP” and “PAC/ELC”
In an ideal world, all data read/writes would be

consistent (C) across clients and always available (A) to

them, even tolerating partitions (P) if networks are down.

The “CAP Theorem” states the mathematical truth that

is obvious with a bit of thought: you can have at most

two. Research in this area is very important to resilience

design; for example the PAC/ELC extension asks “in

the event of a network partition (P), do we maintain

availability (A) but allow inconsistency (different clients

will see different data), or do we maintain consistency

(C) but make the data store unavailable to clients on the

wrong side of the partition”, and “else (E) in normal times,

when the network is healthy, do we optimize for latency

(speed - L) but allow brief inconsistency (so-called

“eventual consistency”), or for consistency (C) across all

reads and writes at a cost of speed. It’s a complicated

topic, but a fundamental consideration that often

has a major impact on resilience, and requires an

understanding of both user and business requirements.

More green and less red
Uptime — the number of nines — is improved not just by

preventing failures (longer “green” periods), but also by

optimizing the recovery time when there are problems.

Thus investment in shortening downtime periods

(“reducing the red”) pays big dividends. A general ability

to perform rapid recovery (“repave”) for applications is a

useful tool in the inevitable event of low-probability and

unknown outages.

The solution in most cases is to architect differently:

design so that systems can tolerate failure of individual

components or degrade gracefully. This poses a

completely different challenge:

To design and assess the reliability of a system, it is

necessary to understand not just what it depends on,

but how it depends on upstream systems and how it

copes and recovers in the event of various

failure conditions.

The complexity becomes such that it’s no longer

sufficient to have “the smartest person in the room”:

knowledge is needed up and down the technology

stack, requiring lots of smart people to be talking and

listening to each other. Subject matter experts are

needed in networking, compute, storage; mid-tier, data

systems; security policies and compliance requirements;

and increasingly, to have knowledge of new platforms

such as Kubernetes and clouds.

Expertise in resilience itself also becomes much more

important. Many common good practices can help with

design, and there are established concepts that help in

evaluating resilience options.

/ Resilience through Application Management 5

Before we go any further, it is important to define what

resilience means. Gartner’s definition1 (Predicts 2021:

Value Streams Will Define the Future of DevOps) is a

good one:

IT resilience is the organization’s ability to anticipate,

detect, assimilate and adapt to IT-related hazards —

such as application defects, performance thresholds,

security vulnerabilities, single points of failure and

service provider outages — and to continuously improve

capabilities to avert, absorb, abate and recover.

This expresses it in quite concrete terms and emphasizes

the importance of continuous improvement. However

in practice there are tremendous trade-offs between

averting and adapting, and resilience is so hard

because so many different factors come in to play.

Business impact analysis (BIA) requires subjective value

judgments and strategic thinking considered together

with a deep understanding of technical costs of possible

solutions, encompassing all aspects of the technical

design. In addition, people’s time is a scarce resource,

and resilience, much like insurance, is something often

viewed as a dull, tick-box exercise. The only way to

achieve resilience is to engage all stakeholders, prioritize

it, foster good communication, and put in place

processes that facilitate shared understanding.

1 Gartner, Predicts 2021: Value Streams Will Define the

Future of DevOps, Daniel Betts, Chris Saunderson, Ron

Blair, Manjunath Bhat, Jim Scheibmeir, Hassan Ennaciri,

October 5 2020.

Gartner’s IT Resilience Framework
Figure 2: IT Resilience - Reliable + Tolerant + Recoverable

/ Resilience through Application Management 6

One of the most powerful trends in resilience is shifting the focus from

infrastructure to applications: instead of looking closely at the technology,

hardware, and platforms, resilience should start with the logical application

components from end-user delivery through to the back-end data plane, the

responsibilities of these logical groupings à la microservices, the theoretical

failure modes and mitigation for each, and their actual performance.

Application Management: an Innovative
(but Obvious) Approach to Resilience

This makes the topic comprehensible to all the stakeholders, naturally

directing conversations to questions from different functions:

Development:
How should the application

be made resilient?

Architecture:
Which resilience patterns

apply to this application?

It will never be the case that everyone will understand

everything, but with a top-down application-first focus,

the discussion is more accessible and the topics more

important. The developer who doesn’t know the concept

of an RPO is a bigger problem for a resilience strategy than

the CFO who doesn’t understand virtual networking.

An application-led approach is not to say infrastructure

isn’t relevant. It absolutely is, as problems with compute,

storage, networking won’t go away, and it is essential to

be able to see easily how logical application components

map to them. However infrastructure is only one of many

supporting components, and the common focus on them

for resilience can distract from more important issues

and exclude important voices from the conversation.

These should be considered alongside other supporting

components, including software technologies, platforms,

and services, and viewed from an overarching perspective

of delivering the business requirements. By framing the

problem in terms of applications, it becomes much easier

to share the knowledge brought by each different subject

matter expert.

Infrastructure:
Will the application cope

with a failure at this device?

Security:
Where is the data stored, is

it encrypted and safe from

hackers?

Operations:
Is any part of the application

running sub-optimally?

Finance:
How much more expensive is

a lower RPO?

Process:
Can we demonstrate

resilience to the regulator?

Business:
What is the effect on

users if the application is

unavailable?

/ Resilience through Application Management 7

Another major benefit of this shift is that common solution
patterns for resilience become apparent: even if the database systems are

different, or the underlying platforms are different, many of the same high-level architectural

designs for resilience can apply. Again, the shift isn’t intended to prevent resilience from

being considered lower down the stack, e.g. running multiple dedicated network links for

high availability, but for these options to be considered in light of the overall application

requirements: if an application can run fine with mere “eventual consistency”, there is no need

for a super-high-availability network, and the super-high cost should be avoided.

By teasing out these aspects of application architecture and requirements and making

them explicit, and by finding commonalities across systems, it becomes simpler for all the

stakeholders to have the understanding they need. This is important up front, when collective

knowledge and evolved best-practice patterns can lead to a better resilience solution out of

the gate; however the application-focus and emphasis on common patterns continues to pay

dividends throughout an application’s lifecycle. Where runbooks are similar, operations become

more familiar and thus reliable, and recovery time goes down. And if, for instance, an operations

team can see that eventual consistency is allowed for some applications, then in the event of a

network slowdown, they can prioritize those applications which need full consistency. When an

infrastructure upgrade is planned, or a migration being considered, the affected applications

and the risk to them can easily be seen. When the regulators come knocking, the evidence of

resilience is easier to come by.

And with commonalities comes the ability to evolve faster: any improvement, in any aspect

of resilience design, can be more easily shared. Investment in automation, in fire-drills, in

new technology, these can be done not just to one subsystem of one application, but to a

pattern which can be rolled out to every application that uses that subsystem. With agility so

important to companies, investment in testable, systematic, widely-understood, application-led

resilience is vital: the best processes for resilience make it easier for the impact and risk of new

technologies to be assessed, and allow that assessment to be done once for a wide range of

applications. This investment also allows new technologies and ideas to be applied to resilience

itself, causing it to get stronger over time rather than rot as is often the case with disparate,

static runbooks.

/ Resilience through Application Management 8

The intelligence and data gained during our time as consultants working in the field

and developing application availability software has led to the foundation of our

Application Resilience Maturity Model. The model assists organizations by helping

them to identify where they are on their resilience journey and highlights the next

critical steps required to improve operations. When organizations understand the

stage they are in, they can fully appreciate where they sit in comparison to competitor

brands and the risk facing their business.

Each application or line of business determines their own technology stack and

operational processes including resilience.

Over time, some applications have become very reliable, but many are not. There

are no shared learnings or processes, the technology for applications and resilience

is extremely heterogenous and of variable quality, resulting in frequent fire-fighting

activities to ensure all critical applications are available.

Stage 0 Silos

The Cloudsoft Application
Resilience Maturity Model

MATURIT Y

/ Resilience through Application Management 9

Much of the environment remains the same a stage 1 but with the addition of a further

process, ensuring every application that moves to production must be approved and

periodically re-approved by the ARB. This starts to encourage setting standards for all

applications to achieve, especially if the requirements for approval

are clear.

Typically, critical requirements for applications will include alerts on failures,

documented runbooks and scheduled manual fire-drills. A pragmatic architect or

engineer will examine approved applications when building new ones, reusing existing

and approved architectures and runbooks, although many will not - believing it would

be easier to write a new document than to refactor an existing one. This flaw in the

process harbors the continuation of heterogeneity.

The problem may be reduced by fiats which mandate specific technologies, but it

requires proactive review and the introduction of processes to prevent such fiats from

impeding innovation. Improving resilience plans is time-consuming, difficult to share

upstream and there is little incentive to invest in continual improvement so everything

tends to be “ just good enough”, operating with infrequent panics that require

resolution by application experts.

Stage 1 Architecture Review Board (ARB)

MATURIT Y

/ Resilience through Application Management 10

Resilience maturity starts when there is a team dedicated to delivering it across all

applications. This function may act as the ARB (2) or have members on the ARB along

with other stakeholders. Most of their time however is spent working with the app

teams during development and after release, to apply good and standard practices

where appropriate.

This function is often able to start to develop tools and paper-patterns that app teams

can use, and they are able to feed back to application teams when improvements have

been identified. This function may perform fire-drills more often, following runbooks

without involving the application teams so availability is improved and recovery is

much more reliable.

Stage 2 Shared Site Reliability Engineering
(SRE) function

MATURIT Y

/ Resilience through Application Management 11

Standardized approaches to using containers, Kubernetes, PaaS platforms, cloud

environments, serverless and micro-services are advised by the shared SRE function (3).

Applications are written or modernized to move into these platforms, which provide

increased and standardized resilience.

As this space is fairly new, there are many anti-patterns - expecting any one platform

to be a silver bullet or to automatically be resilient. Unfortunately, although they make

applications resilient if configured correctly, there’s a lot of work involved in running

these platforms in a resilient way. The use of any given platform or architecture has to

be a part of a modern resilience strategy and organizations must accept they won’t

work for every application. If the SRE function (set up in stage 3) isn’t involved in their

curation, the organization slides back to the starting point of the Application Resilience

Maturity Model.

The SRE function is not replaced by modern platforms and architectures, especially

for applications which straddle platforms, but in many instances, the role of the SRE

function is much simpler than at stage 3. This means availability and recovery both

improve, although it can still be a lot of work to develop applications and resilience

plans. It can also be difficult to correlate failures up and down the stack or identify the

appropriate runbook in production.

Stage 3 Modern platforms and architectures

MATURIT Y

/ Resilience through Application Management 12

When teams reach the final stage of the Application Resilience Maturity Model, they are

formalizing their architecture and runbooks, applying tools that allow architectural patterns and

recovery patterns to be re-used. This also includes the automation and testing of applications,

with full awareness and accessibility by all stakeholders.

The pinnacle of application resilience involves tools that transform the runbook from a Word

document to a model in source control, extending techniques such as infrastructure-as-code.

The best performing tools seek to model logical application components so that recovery

processes are easily visualized, while integrating the breadth of technologies introduced in stage

4 to provide consistency. This means availability and recovery are optimized and strategies are

not only reused, they are improved, automatically tested and rolled out. As a resulting effect, all

stakeholders have a clear view of what is running and where, not only in peacetime but also in

the (much-less-likely) event of an incident.

Stage 4 Application resilience modelling and
automation

Wide Area failover needs to be coordinated across

three areas, a blueprint helps to undertake this

in a more principled way, recording each step.

Once blueprinted you can test the resilience of

these patterns.

MATURIT Y

/ Resilience through Application Management 13

Resilience Maturity Model

Summary

Problems

Next steps

It helps to understand where we are so we can make

improvements. To help we have outlined this Resilience

Maturity Model:

0
Silos

Each application team determines

their own technology stack and

operations plan including resilience

with minimal oversight.

Frequent outages and inefficient
recovery for many apps

Very wide variability in resilience
technology and approaches

Frequent reliance on app experts for
recovery

Very limited reuse and shared

evolution of resilience solutions

Establish a review board

(level 1), SRE team (level 2), and/or

common resilience tooling (level 4).

1

Architecture Review
Board (ARB)

As (0), but every application that

moves to or is in production must be

reviewed periodically by the ARB.

Inefficient recovery for many apps

Wide variability in resilience
technology

Reliance on app experts for recovery

Very limited reuse and shared

evolution of resilience solutions

Establish a permanent function

to work with app and op teams to

assess and assist with resilience

(level 2), encourage platforms which

provide greater resilience (level 3),

and/or invest in common resilience

tooling (level 4).

2

Site Reliability
Engineering (SRE)

A dedicated team assesses resilience

across the organization, working with

app teams on an ongoing basis to

design and improve solutions.

Reuse & evolution of resilience
solutions varies by app team but is
manual & time-consuming

SRE teams may stifle innovation &
adoption of new tech, especially for
complex apps

Limited automation of recovery
except for very common apps (as
automation is difficult from first

principles)

The SRE team should be pro-active in

promoting platforms which provide

greater resilience (3) and established

resilience tooling (4).

3

Modern architectures
services and platforms

Clouds, Kubernetes, PaaS platforms,

and new architectures like micro-

services and serverless can simplify

and improve many aspects of

resilience.

Not all applications are suitable for
these standardized platforms

Running these platforms can be
difficult

Specialized expertise is required
for failures (although they are less
frequent)

Applications that have external
dependencies need to cross
platforms/clouds/services require

special attention

Look to combine established

resilience tooling to complement the

limitations of these approaches and

develop consistent resilience across

these approaches and outlier apps

(level 4).

4

Application resilience
tooling for modelling
and automation

A standardized service gives a

uniform high-level approach to

resilience across the organization

Difficult to design well — so consider
using Cloudsoft AMP

Can take time to gain traction across
an organization (start small)

Necessary to integrate with existing

systems

Encourage cross-team collaboration

so application developers recognize

resilience as an exciting engineering

problem, not a documentation chore

or meeting discussion, and so they

build more business-oriented metrics

into blueprints and move beyond

automated resilience to automated

optimization based on business

priorities

/ Resilience through Application Management 14

0

With each team having responsibility
for resilience, some apps have over
time become very reliable, but many
are not, depending on the skills and
bandwidth of the team. Technology
for running applications and
recovering applications is extremely
heterogeneous, making it difficult
for operations teams to be experts
in the often very different recovery
processes. This can have a partial
upside in forcing some DevOps by
engaging the development team in
operational problems, but failures
can be frequent, recovery often slow,
and a reliance on implicit knowledge
forms which breaks down as the
teams change. Operational plans are
usually written down, but with wide
variance in approach and style and
quality, contributing to inefficient
recovery. There is not shared learning
or a process for resilience reuse.
Things are flaky and fire-fighting is
normal on all but a few core apps (if
you’re lucky!).

1

Having a broad review function starts
to encourage some consistency,
especially where the requirements
for approval are clear. Typically
these requirements will include
alerts on failures, documented
runbooks, and scheduled manual
fire-drills. Ideally these are regularly
refreshed and applications in
production re-reviewed. When
building new applications, architects
and engineers will sometimes look
at those previously approved, and
reuse architectures and runbooks.
However many will not, as it may
be considered easier to write a
new document than to refactor
an existing, so there is still a lot of
heterogeneity. Mandating specific
technologies can reduce this
“sprawl”, but without good processes
it can also stifle innovation and
improvement. Improving resilience
plans is still the responsibility of each
app team, and is a time-consuming
activity and difficult to share with
other teams. There is not normally
a culture or process of investing in
continual improvement for resilience,
so everything tends to be “ just good
enough” with not infrequent panics
that require the app experts to
be raised.

2

Resilience maturity starts when
there is a dedicated function which
amasses expertise in good resilience
design and shares it with teams.
Often this is called the “Site Reliability
Engineering” team although its remit
is often broader than “sites”. This
function may act as the ARB (1) or,
usually better, have members on the
ARB along with other stakeholders.
However most of this group’s time
should be spent working with app
teams, both during development
and after release, to apply good
and standard practices where
appropriate. This function is often
able to start to develop tools and
paper-patterns that app teams can
use, and they are able to feed back to
app teams when improvements have
been identified. Some applications
do not fit common patterns and
can remain outliers, but for all apps
including these outliers an SRE
function is able to perform fire-
drills more often. This may be done
manually, following runbooks, or with
some custom-built automation, but
crucially it is usually done without
direct involvement of the app teams
so the quality of the resilience plan
is much greater. This leads to more
efficient recovery and increased
availability, and panics start to be
less frequent.

3

Standardized modern approaches
— using containers, cloud, serverless,
PaaS platforms, micro-services — are
widely used, often promoted by the
shared SRE function (2). Applications
are being written or modernized
to move into these platforms to
provide increased and standardised
resilience. As this space is fairly
new, there are many anti-patterns —
expecting any one to be a silver bullet
(many will be needed, and they will
keep evolving), expecting them to
be resilient automatically (they make
apps resilient, if done right, and that
takes work, and there’s a lot of work
to run these platforms themselves in
a resilient way). Nevertheless this has
to be a part of a modern resilience
strategy. Organizations should accept
they won’t work for everything, and
if the SRE function (2) isn’t involved
in their curation you’re back to step
(0) or (1). For apps that fit with these
approaches, availability and recovery
are often much improved, although
for complex apps it can still be a lot
of work to develop applications and
the resilience plans. Where there are
problems however, it is often now
harder in production to correlate
failures up and down the now-more-
complicated stack and to identify
appropriate remediations, especially
as organizations will over time
need several.

4

The SRE team (2) has put in place a
service that gives real-time visibility
of applications and can perform
resilience automation itself as well
delegate where appropriate to other
platforms (eg (3) and report on their
status. Application teams can access
common architecture and resilience
patterns understood by this service
and can use them in dev/test. The
architecture and runbooks discussed
previously are formalized into these
re-usable patterns, which are tested
and evolved on an ongoing basis.

This is the pinnacle of DevOps and
application resilience, where tools
transform on-paper runbooks and
design documents into executable
models under source control,
extending techniques such as
infrastructure-as-code.

The best of these tools seek to model
logical application components, so
that recovery processes are easily
visualized. It is also crucial that this
tooling can be integrated with the
breadth of technologies used in
the organization, including (3), to
leverage their strengths and provide
consistency across all of them.
Through this service, all stakeholders
have a clear view of the information
they need — from high level details
of what is running, compliance,
resilience plans, and issues, to
low level details of where they are
running and what they are doing —
available in peacetime and in the
(much-less-likely) event of
an incident.

Experience

Experience at each Level
Do you recognise your own organisational experience?

/ Resilience through Application Management 15

A successful resilience strategy can only be achieved by acknowledging that it is a difficult

problem and understanding what makes it difficult. With this in place, organizations can

appreciate what each of many different stakeholder groups need to bring to the solutions,

and put in place the mechanisms that allow each of these groups to get what they need

over time to sustain and evolve the solutions.

This eBook identifies four main ingredients, laid out as a maturity model for application

resilience where companies ordinarily progress sequentially through the levels. However by

being aware of the levels, and by being aware of the application-focussed approach and

consistent application management tooling, companies can quickly and safely incorporate

all the ingredients and move rapidly to level 4.

Conclusion

Cloudsoft are the company behind Cloudsoft AMP, the leading
Application Management Platform, and the only software which
gives both composable design-time models and consistent run-
time models for any application in any environment. To learn
more about how Cloudsoft AMP can turbo-charge your resilience
strategy and get your teams to level 4 resilience, contact
Cloudsoft today.

orSpeak to an expert Learn more about AMP

/ Resilience through Application Management 16

https://cloudsoft.io/amp-initial-conversation
https://cloudsoft.io/software

Further reading

cloudsoft.io

© 2021 Cloudsoft Corporation Limited. All Rights Reserved. Registered Company No. SC349230.

Discussion Paper: Building the UK
financial sector’s operational resilience

Bank of England DP01/18
Prudential Regulation Authority (PRA) DP01/18
Financial Conduct Authority (FCA) DP18/04

Operational resilience in financial services:
Seizing business opportunities

KPMG, June 2019

Operational resilience in financial services:
Time to Act

PwC, June 2019

HC 224: IT failures in the Financial Services
Sector, Second Report of Session 2019–20

House of Commons Treasury Committee

Cyber and Technology Resilience: Themes
from cross-sector survey 2017/2018

FCA

TSB Review: An Independent Review Following
TSB’s Migration onto a New IT Platform in April
2018

Slaughter and May, October 2019

Time to flourish: A practical guide to enhancing
operational resilience in the UK financial
services sector

Deloitte, 2019

Operational Resilience is Financial Resilience

Accenture, 2019

Final Report: EBA Guidelines on ICT and
security risk management

EBA/GL/2019/04
European Banking Authority, 29 November 2019

17/ Resilience through Application Management

